Chapitre 5 – Courbes paramétrées en cartésiennes

Exercice 1.

Étudier la courbe paramétrée définie par

$$x(t) = -t + t^2$$
 $y(t) = t^2 + t^3$

Exercice 2.

Étudier la courbe paramétrée définie par

$$x(t) = 3t^2 - 2t^3$$
 $y(t) = 4t - t^4$

Exercice 3. Lemniscate de Bernoulli

Étudier la courbe paramétrée définie par

$$x(t) = \frac{t}{1+t^4}$$
 $y(t) = \frac{t^3}{1+t^4}$

Exercice 4.

Étudier la courbe paramétrée définie par

$$x(t) = \exp(\sin(2t))$$
 $y(t) = \exp(\cos(t))$

Exercice 5. Astroïde

1. Étudier la courbe paramétrée définie par

$$x(t) = \cos^3(t) \qquad y(t) = \sin^3(t)$$

2. On note Γ l'arc paramétré. Soit $M \in \Gamma$ qui n'est pas sur l'un des axes des coordonnées. La tangente à Γ en M coupe les axes en A et B. Montrer que la distance AB est constante.

Exercice 6. Courbe de Lissajous

Étudier la courbe paramétrée définie par

$$x(t) = \sin(3t)$$
 $y(t) = \cos(5t)$

Exercice 7. Folium de Descartes

1. Étudier la courbe paramétrée définie par

$$x(t) = \frac{t}{1+t^3}$$
 $y(t) = \frac{t^2}{1+t^3}$

2. Montrer que $M(t_1)$, $M(t_2)$ et $M(t_3)$ sont alignés si, et seulement si, $t_1t_2t_3 = -1$.

3. Montrer que la tangente en M(t) (pour $t \neq -1$ et $t \neq 0$), coupe la courbe en un point M(s) avec $s \neq t$. Déterminer ensuite s.

Exercice 8.

On fait rouler sans glissement un cercle de rayon 1 sur l'axe (Ox). Déterminer et tracer la courbe décrite par un point du cercle.

Exercice 9.

Soit \mathcal{H} l'hyperbole d'équation xy=1. Déterminer et tracer le lieu des projetés orthogonaux de O sur les tangentes de \mathcal{H} .

Exercice 10.

Soit l'arc paramétré défini par

$$x(t) = \frac{t - \sin(t)}{t^2}$$
 $y(t) = \frac{1 - \cos(t)}{t^2}$.

Montrer qu'il peut être prolongé continûment pour tout $t \in \mathbb{R}$ et qu'il possède un axe de symétrie. Montrer qu'il possède une infinité de points de rebroussement situés sur un même cercle, et que les tangentes en ces points sont concourantes. Tracer l'arc.

Exercice 11.

Soit l'arc paramétré défini par

$$x(t) = t^2 + t$$
 $y(t) = 2t + \frac{1}{t}$.

- 1. Donner une condition nécessaire et suffisante pour que les trois points $M(t_1)$, $M(t_2)$ et $M(t_3)$ soient alignés.
- 2. Montrer que l'arc paramétré admet exactement trois points d'inflexion et qu'ils sont alignés.

Exercice 12. Bicorne

Étudier l'arc paramétré défini par

$$x(t) = \sin(t)$$
 $y(t) = \frac{\cos^2(t)}{2 - \cos(t)}$.

