TD 4 — Produit scalaire, orthogonalité

Produits scalaires, inégalités, calculs dans un espace euclidien

Exercice 1 — Un produit scalaire tordu. Soit a et b deux réels. Soit B l'application sur $\mathbb{R}^2 \times \mathbb{R}^2$ définie par

$$B\left(\left(\frac{x_1}{x_2}\right),\left(\frac{y_1}{y_2}\right)\right) = x_1y_1 + 2x_1y_2 + ax_2y_1 + bx_2y_2.$$

- 1. À quelle(s) condition(s) sur (a, b), B définit-elle un produit scalaire sur \mathbb{R}^2 ?
- 2. Préciser, pour a = 2 et b = 5, la norme définie par B.
- 3. Écrire l'inégalité de Cauchy-Schwarz pour cette norme.

Exercice 2 — Cauchy-Schwarz. Soit x_1, \ldots, x_n des réels strictement positifs vérifiant $x_1 + \cdots + x_n = 1$.

- 1. En remarquant que pour tout $k \in 1, \ldots, n$, $1 = \sqrt{x_k} \times \frac{1}{\sqrt{x_k}}$, montrer que $n^2 \leqslant \sum_{k=1}^n \frac{1}{x_k}$.
- 2. Préciser les cas d'égalité.

Exercice 3 — Sur l'espace des matrices.

1. Montrer que l'application $\Phi: \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$ définie pour tout $(A, B) \in \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$ par

$$\Phi(A, B) = \operatorname{Tr}(A^{\top}B)$$

est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

2. Soit $A \in \mathcal{S}_n(\mathbb{R})$ et $B \in \mathcal{S}_n(\mathbb{R})$. Montrer que $(\text{Tr}(AB + BA))^2 \leq 4\text{Tr}(A^2)\text{Tr}(B^2)$.

Orthogonalité, projection, distance à un sous-espace vectoriel

Exercice 4 — Orthogonalisation explicite. On considère les trois vecteurs suivants de \mathbb{R}^3 : u = (1,0,1), v = (1,1,1) et w = (-1,1,0). Vérifier que (u,v,w) est une base de \mathbb{R}^3 , puis déterminer la base orthonormée issue de la base (u,v,w) par le procédé d'orthogonalisation de Schmidt.

Exercice 5 — Projections sur des sous-espaces orthogonaux. Dans \mathbb{R}^4 , on considère le sous-espace vectoriel E = Vect((1,0,0,-1),(-1,-1,1,1)).

- 1. Déterminer un système d'équations cartésiennes de E^{\perp} .
- 2. Soit $u=(1,2,-1,-2)\in\mathbb{R}^4$. Décomposer u en la somme d'un élément de E et d'un élément de E^{\perp} . Vérifier le théorème de Pythagore sur cette décomposition.

Exercice 6 — Dans l'espace des polynômes. Soit Φ l'application définie par :

$$\Phi: \begin{cases} \mathbb{R}_2[X] \times \mathbb{R}_2[X] \to \mathbb{R} \\ (P,Q) \mapsto P(0)Q(0) + P'(0)Q'(0) + P''(0)Q''(0) \end{cases}$$

- 1. Montrer que Φ est un produit scalaire.
- 2. Soit $F = \text{Vect}(1 + X + X^2, 1 X + X^2)$. Déterminer F^{\perp} (pour la relation d'orthogonalité définie par le produit scalaire Φ).

Exercice 7 — Représentation matricielle d'une symétrie. Trouver la matrice dans la base canonique de \mathbb{R}^3 de la symétrie orthogonale par rapport au plan d'équation x + y - z = 0.

Exercice 8 — Familles obtusangles. Soit $x_1, x_2, \ldots, x_{n+2}$ des vecteurs d'un espace vectoriel euclidien E de dimension $n \in \mathbb{N}^*$. On va montrer que nécessairement, il existe deux indices $i \neq j$ tels que

$$\langle x_i, x_i \rangle \geq 0;$$

autrement dit, les angles formés par les couples (x_i, x_j) ne peuvent pas tous être obtus. La preuve se fait par récurrence sur n.

- 1. Établir la propriété pour n = 1.
- 2. Supposons la propriété établie au rang $n \ge 1$. Soit E un espace vectoriel de dimension n+1. Soit $x_1, x_2, \ldots, x_{n+3}$ des vecteurs de E, et supposons que :

$$\forall i, j, 1 \le i, j \le n+2, \quad i \ne j \implies \langle x_i, x_j \rangle < 0.$$

- (a) Justifier que x_1, \ldots, x_{n+3} sont tous non nuls.
- (b) Soit $F = (\text{Vect}(x_{n+3}))^{\perp}$. Quelle est la dimension de F? Justifier que, pour tout $i \in 1, \ldots, n+2$, il existe y_i dans F et λ_i dans \mathbb{R} tel que $x_i = y_i + \lambda_i x_{n+3}$. Montrer de plus que λ_i est strictement négatif.
- (c) Montrer que pour tout i, j dans $1, \ldots, n+2, \langle y_i, y_i \rangle < 0$. Conclure.

Exercice 9 — Sous-espaces orthogonaux, projections, symétries. Soit F le sous-espace vectoriel de \mathbb{R}^4 défini par

$$F = \left\{ (x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0 \right\} \bigcap \left\{ (x, y, z, t) \in \mathbb{R}^4 : x - y + z - t = 0 \right\}.$$

- 1. Déterminer une base orthonormale de F^{\perp} .
- 2. Écrire la matrice dans la base canonique de \mathbb{R}^4 de la projection orthogonale sur F.
- 3. Écrire la matrice dans la base canonique de \mathbb{R}^4 de la symétrie orthogonale par rapport à F.
- 4. Calculer d(u, F) où u = (1, 2, 3, 4).

Exercice 10 — Encore un produit scalaire sur les polynômes. Soit $n \ge 3$ et $E = \mathbb{R}_n[X]$.

- 1. Montrer qu'en posant pour tout $P \in E$ et tout $Q \in E$, $\Phi(P,Q) = \int_{-1}^{1} P(t)Q(t) dt$, on définit un produit scalaire sur E.
- 2. En l'interprétant géométriquement, calculer la quantité

$$\inf_{(a,b,c)\in\mathbb{R}^3} \int_{-1}^1 \left(t^3 - (at^2 + bt + c) \right)^2 dt.$$

Exercice 11 — Distances à des sous-espaces de matrices. Soit $n \ge 1$. On munit l'espace $\mathcal{M}_n(\mathbb{R})$ du produit scalaire $\langle A, B \rangle = \text{Tr}(A^\top B)$ (voir l'exercice 3).

1. Montrer que les sous-espaces $\mathcal{S}_n(\mathbb{R})$ (matrices symétriques) et $\mathcal{A}_n(\mathbb{R})$ (matrices antisymétriques) sont supplémentaires et orthogonaux.

2. Calculer la distance à $\mathcal{S}_3(\mathbb{R})$ de la matrice

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

- 3. Montrer que l'ensemble H des matrices de trace nulle est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et donner sa dimension.
- 4. Donner la distance à H de la matrice J dont tous les coefficients valent 1.

🕳 Endomorphismes remarquables d'un espace Euclidien 🤝

Exercice 12. Montrer que les matrices suivantes sont orthogonales.

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad B = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix} \qquad C = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Exercice 13 — Adjoint d'un endomorphisme de $\mathcal{M}_n(\mathbb{R})$. Soit $n \in \mathbb{N}^*$. On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire $\langle M, N \rangle = \text{Tr}(M^\top N)$. Soit A et B deux matrices fixées de $\mathcal{M}_n(\mathbb{R})$. On considère l'application

$$u: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$$

 $M \mapsto AMB.$

- 1. Montrer que u est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Déterminer l'endomorphisme adjoint.

Exercice 14 — Applications qui conservent les distances. Soit E un espace euclidien de dimension n. Soit f une application de E dans E vérifiant f(0) = 0 et qui conserve les distances :

$$\forall (x, y) \in E^2, \quad ||f(x) - f(y)|| = ||x - y||.$$

- 1. Montrer que f conserve les normes : pour tout $x \in E$, ||f(x)|| = ||x||.
- 2. Montrer que f conserve le produit scalaire : pour tout $(x,y) \in E^2$, $\langle f(x), f(y) \rangle = \langle x, y \rangle$
- 3. Soit (e_1, \ldots, e_n) une base orthonormée de E. Montrer que $(f(e_1), \ldots, f(e_n))$ est une base orthonormée de E, puis que pour tout $x \in E$

$$f(x) = \sum_{i=1}^{n} \langle x, e_i \rangle f(e_i).$$

4. En déduire que f est linéaire, et que c'est un automorphisme orthogonal de E.

Exercice 15 — Majoration de la trace. Soit $A \in \mathcal{O}(n)$. Montrer que $|\operatorname{Tr}(A)| \leq n$, avec égalité si et seulement si $A = \pm I_n$.

3

Réduction des matrices symétriques réelles ~

Exercice 16 — Calculs explicites. La matrice suivante est-elle diagonalisable? Si oui, la diagonaliser.

$$A = \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}.$$

Même question avec

$$B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Exercice 17. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que si $A + A^{\top}$ est nilpotente, alors A est antisymétrique.

Exercice 18 — Racines de matrices symétriques. Soit $A \in \mathcal{S}_n(\mathbb{R})$.

- 1. Montrer qu'il existe $B \in \mathcal{S}_n(\mathbb{R})$ telle que $B^3 = A$.
- 2. Montrer qu'il existe $B \in \mathcal{S}_n(\mathbb{R})$ telle que $B^2 = A$ si et seulement si toutes les valeurs propres de A sont positives.