Problème 2 – Polynômes de Tchebychev et application A faire pour le 21 février 2025

Partie I – Polynômes de Tchebychev

On définit une suite de polynômes $(T_n)_{n\in\mathbb{N}}$ en posant $T_0=1,\,T_1=X$ et $\forall n\in\mathbb{N}:$

$$T_{n+2} = 2XT_{n+1} - T_n.$$

Ces polynômes sont appelés **polynômes de Tchebychev de première espèce** et sont souvent utilisés pour établir des résultats d'approximation de fonctions.

- 1. Expliciter T_2 et T_3 .
- 2. Déterminer le degré du polynôme T_n ainsi que son coefficient dominant.
- 3. Établir que pour tout $n \in \mathbb{N}$ et tout $\theta \in \mathbb{R}$, on a $T_n(\cos \theta) = \cos(n\theta)$.
- 4. En déduire les valeurs de $T_n(1)$ et $T'_n(1)$.
- 5. Pour $n \in \mathbb{N}^*$, déterminer les racines de T_n appartenant à l'intervalle [-1,1]. Combien y en a-t-il? Qu'en déduire?

Partie II – Calcul de $\zeta(2)$

La fonction zeta de Riemann, notée ζ est définie formellement par $\zeta(s) = \sum_{k=1}^{+\infty} \frac{1}{k^s}$. L'objectif de cette partie est de calculer $\zeta(2)$. Autrement dit, on cherche

$$\lim_{n\to+\infty} S_n,$$

οù

$$S_n = \sum_{k=1}^n \frac{1}{k^2}.$$

- 1. Réaliser la décomposition en éléments simples de $\frac{1}{X(X-1)}$.
- 2. En déduire la valeur de la somme $\sum_{k=1}^{n} \frac{1}{k(k+1)}$ et montrer que pour tout $n \ge 1$:

$$S_n \le 2 - \frac{1}{n+1}.$$

3. Établir que la suite (S_n) converge. On note ℓ sa limite.

4. On introduit

$$S'_n = \sum_{k=1}^n \frac{1}{(2k-1)^2}.$$

- (a) Former une relation exprimant S_{2n} en fonction de S_n et S'_n .
- (b) En déduire que (S'_n) converge et exprimer sa limite ℓ' en fonction de ℓ .

Nous allons maintenant pour suivre l'étude en calculant ℓ' à l'aide des polynômes de Tché bychev :

5. Soit $n \in \mathbb{N}^*$. Pour $k \in \{1, \dots, n\}$, on note :

$$x_k = \cos\left(\frac{(2k-1)\pi}{2n}\right),\,$$

les racines de T_n .

(a) Établir l'égalité :

$$\frac{T'_n(X)}{T_n(X)} = \sum_{k=1}^n \frac{1}{X - x_k}.$$

(b) En déduire:

$$\sum_{k=1}^{n} \frac{1}{1 - x_k} = n^2,$$

puis les valeurs des sommes :

$$\sum_{k=1}^{n} \frac{1}{\sin^2 \left(\frac{(2k-1)\pi}{4n} \right)} \quad \text{et} \quad \sum_{k=1}^{n} \frac{1}{\tan^2 \left(\frac{(2k-1)\pi}{4n} \right)}.$$

6. (a) Justifier, par un argument de convexité, que pour tout $x \in \left[0, \frac{\pi}{2}\right]$:

$$\sin x \leqslant x \leqslant \tan x$$
.

(b) En déduire un encadrement de S_n' puis les valeurs de ℓ' et ℓ .